Probabilistic Inference in Hybrid Domains by Weighted Model Integration
نویسندگان
چکیده
Weighted model counting (WMC) on a propositional knowledge base is an effective and general approach to probabilistic inference in a variety of formalisms, including Bayesian and Markov Networks. However, an inherent limitation of WMC is that it only admits the inference of discrete probability distributions. In this paper, we introduce a strict generalization of WMC called weighted model integration that is based on annotating Boolean and arithmetic constraints, and combinations thereof. This methodology is shown to capture discrete, continuous and hybrid Markov networks. We then consider the task of parameter learning for a fragment of the language. An empirical evaluation demonstrates the applicability and promise of the proposal.
منابع مشابه
Hashing-Based Approximate Probabilistic Inference in Hybrid Domains: An Abridged Report
In recent years, there has been considerable progress on fast randomized algorithms that approximate probabilistic inference with tight tolerance and confidence guarantees. The idea here is to formulate inference as a counting task over an annotated propositional theory, called weighted model counting (WMC), which can be partitioned into smaller tasks using universal hashing. An inherent limita...
متن کاملHashing-Based Approximate Probabilistic Inference in Hybrid Domains
In recent years, there has been considerable progress on fast randomized algorithms that approximate probabilistic inference with tight tolerance and confidence guarantees. The idea here is to formulate inference as a counting task over an annotated propositional theory, called weighted model counting (WMC), which can be partitioned into smaller tasks using universal hashing. An inherent limita...
متن کاملEfficient Weighted Model Integration via SMT-Based Predicate Abstraction
Weighted model integration (WMI) is a recent formalism generalizing weighted model counting (WMC) to run probabilistic inference over hybrid domains, characterized by both discrete and continuous variables and relationships between them. Albeit powerful, the original formulation of WMI suffers from some theoretical limitations, and it is computationally very demanding as it requires to explicit...
متن کاملNew Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملComponent Caching in Hybrid Domains with Piecewise Polynomial Densities
Counting the models of a propositional formula is an important problem: for example, it serves as the backbone of probabilistic inference by weighted model counting. A key algorithmic insight is component caching (CC), in which disjoint components of a formula, generated dynamically during a DPLL search, are cached so that they only have to be solved once. In the recent years, driven by SMT tec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015